FEUILLE 31 - PREMIÈRE OPTION MATHÉMATIQUES

Fonctions dérivées I

* Exercice 1

Déterminer les dérivées des fonctions suivantes.

$$f(x) = 5x^2$$
, $g(x) = x + x^3$, $h(x) = x^3 - 12x^2 + 36x + 4$
 $l(x) = \frac{4}{x}$, $m(x) = 2x^2 + \sqrt{5}x - 3$, $n(x) = 2x^2 + \sqrt{5}x - 3$

* Exercice 2

Déterminer les dérivées des fonctions suivantes définies sur \mathbb{R} .

$$f(x) = (x^2 - 1)(x^3 + x), \quad g(x) = x(1 + \sqrt{x})$$
$$h(x) = \frac{x - 2}{2x^2 + 1}, \quad k(x) = \frac{x^2 + x - 1}{x^2 + 1}$$

* Exercice 3

Déterminer les dérivées des fonctions suivantes définies sur \mathbb{R} .

$$f(x) = \frac{5}{x^2 + 2}$$
, $g(x) = \frac{x - 2}{2x^2 + 1}$, $h(x) = (5x^2 - 4x + 3)^2$

* Exercice 4

Déterminer les dérivées des fonctions suivantes définies sur \mathbb{R}^+ .

$$i(x) = \sqrt{2}x + 2\sqrt{x}$$
 et $j(x) = 3x^2\sqrt{x}$

\star Exercice 5

Déterminer les dérivées des fonctions suivantes définies sur \mathbb{R} .

$$m(x) = (x^2 + 1)(x^3 + x), \quad f(x) = \frac{x^2 - 1}{x^2 + 1}$$

$$g(x) = \frac{5}{x^4 + 6}, \quad h(x) = (3x^2 - x + 4)^2$$