FEUILLE 25 - TERMINALE SPÉCIALITÉ MATHÉMATIQUES

Études de fonctions trigonométriques

$\star \underline{\text{Exercice 1}}$

Soit la fonction f définie sur \mathbb{R} par

$$f(x) = x + 2\cos x$$

- 1. Calculer la dérivée f'(x) pour tout $x \in \mathbb{R}$.
- 2. Montrer que f est décroissante sur le segment $\left[\frac{\pi}{6}; \frac{5\pi}{6}\right]$.

* Exercice 2

Calculer les dérivées des fonctions suivantes

$$f(x) = 3\cos(3x+5)$$
 et $g(x) = x^3\cos x$
 $h(x) = \frac{3}{5}\cos(5x-3) + 4\sin(-\frac{3}{4}x+1)$
 $k(x) = \frac{\sin x}{x}$

* Exercice 3

Soit la fonction f définie sur \mathbb{R} par

$$f(x) = 2\cos(2x) - 1$$

- 1. Résoudre f(x) = 0 dans \mathbb{R} .
- 2. Déterminer la plus petite période de la fonction f.
- 3. Montrer que l'on peut restreindre l'étude de la fonction f à l'intervalle $[0; \frac{\pi}{2}]$.
- 4. Établir le tableau de variation de f sur $[-\pi; \pi]$

* Exercice 4

Soit la fonction l définie sur $[-\pi;\pi]$ par

$$l(x) = ax + b\cos x + c$$

avec $a, b, c \in \mathbb{R}$.

- 1. Sachant que la tangente à C_l au point d'abscisse $-\frac{\pi}{2}$ est horizontale, que $B(0;3) \in C_l$ et que la tangente en B a un coefficient directeur égal à -2, déterminer les valeurs des paramètres a, b et c.
- 2. Avec les valeurs de a, b et c déterminées précédemment, montrer que l est strictement décroissante sur \mathbb{R} .
- 3. Montrer que l'équation l(x)=0 admet une unique solution α sur $[0;\frac{\pi}{2}]$ et encadrer α au dixième.
- 4. En déduire le signe de l(x) sur \mathbb{R} .